HCV REMEDIATION PILOT PROJECT - SIME DARBY PLANTATION'S EXPERIENCE 24 June 2014

Developing Sustainable Futures

Plantation

CONTENTS

- 1. Background of Project
- 2. Work Processes
- 3. Challenges
- 4. SDP's Approach in Developing Remediation/Compensation Plan

Introduction – Background to the Project

- Sime Darby Indonesian Plantation (SDIP) carried out global HCV assessment in September 2009
 - Possible HCV lost during land clearings & new plantings between the period of Nov 2005 & Sept 2009.
- RSPO Secretariat & SD Plantation agreed on options of 'acceptable solution for HCV compensation'.
 - HCV Remediation Pilot Project in 2010.
 - In Central Kalimantan, Indonesia.
 - Involving 2 of SDP's oil palm estates:
 - Baras Danum Estate
 - Batang Garing Estate
- Based on a 'historical'/ retrospective HCV Assessment approach

Stage	Implementation Plan
0	Appoint independent consultants
1	Establish land and remediation project parameters
2	Develop remediation plan to RSPO requirements
3	Carry-out test phase of remediation plan
4	Review and evaluate test phase outcomes
5	Complete remaining phases of remediation
6	Prepare final remediation report for EB review
7	Prepare remediation guidelines for RSPO based on SDP Pilot Project
8	Maintenance of areas

Period of Implementation: End 2010 - Mid 2013

Work Processes

- 1. Retrospective HCV Assessment
 - i. Re-scoping of the remediation project area
 - ii. Identification of suspected areas: loss of primary forests and/or HCV areas
 - a. Satellite Imageries
 - b. Topography & soil maps

Land cover analysis Analysis of hydrology Analysis of fragile land

- iii. Verification of the existence of primary forest or HCV areas before the clearance for planting
 - a. Ground-truthing; interviews knowledgeable informants & historical eyewitnesses
- iv. Assessment of values (functions and/or benefits) of HCV areas which have been lost or degraded

Work Processes

- 2. The Development of Remediation Options & Proposal
 - A. Aims
 - i. Reverse, restore, or rehabilitate the long-term benefits and/or functions
 - ii. Mitigate –ve impacts which are a consequence of the loss of HCV area
 - iii. Substitute or compensate the real tangible functions enjoyed or benefits derived
 - B. Options
 - i. Scientifically justifiable
 - ii. Realistic & practical
 - iii. Commensurate with the loss of benefits and/or functions
 - iv. Effectively discourage the clearing of primary forest or HCV areas.

Remediation/Compensation Options – Priority

- 1. In-situ remediation
- 2. In-situ compensation
- 3. Ex-situ compensation

- Remediation of HCV1 lost
 - 1. Safeguarding the wildlife corridor function of the forest area neighbouring Baras Danum Estate (outside concession area)
 - 2. Compensation of the remaining mixed rubber-forest area owned by local community in Batang Garing Estate.
 - 3. Rehabilitation of the non-plantable, ex-illegal mining swamp areas in Batang Garing Estate with forest tree species
- Remediation of HCV4 lost
 - 1. Establishment of civil engineering structures (landbased & river based) in Baras Danum Estate.
 - 2. Rehabilitation of land in Baras Danum Estate through planting forest tree species.

The civil engineering structures are functioning properly to achieve their purposes: the Retaining Dam (above-left), the Gully Plug (above-right), the Water Reservoir (below-left), and the Silt Pit (below-right). All pictures were taken in July 2012.

The planted seedlings of Gelam *Melaleuca leucadendron and Gerunggang Cratoxylum* arborescens that grow well on the ex-mining area in Block U 68 of BGE.

The planted seedlings of Waru *Hibiscus tiliaceus and Angsana Pterocarpus indicus that grow well around the Water Reservoir in Block M 59 of BDE.*

Challenges

- Retrospective HCV assessments are highly debatable, even amongst experts.
- Similarly, the remediation options. Types of remediation? Remediation vs. Compensation? Its priority?
- Extensive resources, expertise and manpower for each remediation activity (from implementation, verification to monitoring phases).
- Timeline extension from initial one year 2.5 years period due to extensive review of report and its methodologies for each remediation activity.

- For loss of Biodiversity HCVS
 - Priority given to *in-situ* remediation.
 - Biodiversity Conservation Compensation Projects i.e. Endangered, Rare, and Threatened (ERT) tree planting species in the conservation set-aside areas within our premises.
 - *Ex-situ* Corporate Social Responsibility (CSR) projects.
- For loss of Social HCVS
 - Direct engagement with project affected communities (PAC) on CSR projects.

In-situ Remediation Options

Riparian Reserves – Biodiversity Enhancement

In-situ Remediation Options

Conservation Set-Aside Areas

Jentar Project, Pahang

In-situ Remediation Options

Restoration & conservation of water catchment areas

Ex-situ – Corporate CSR Projects

Direct Involvement – collaboration & funding with third party

THANK YOU

Developing Sustainable Futures

Plantation